Analysis of a novel spore antigen in Bacillus anthracis that contributes to spore opsonization.
نویسندگان
چکیده
The significance of Bacillus anthracis as an agent of bioterrorism has been well established. An understanding of both the pathogenesis and the host response is required to elucidate approaches to more rapidly detect and effectively prevent or treat anthrax. Current vaccine strategies are focused primarily on production of antibodies against the protective antigen components of the anthrax toxins, which are secreted by the bacilli. A better understanding of the dynamic morphology of the dormant and germinating spore and its interaction with the host immune system could be important in developing an optimally efficacious anthrax vaccine. A spore-associated protein was identified that was specific to the Bacillus cereus group of bacteria and referred to as spore opsonization-associated antigen A (SoaA). Immuno-electron microscopy localized this protein to the area of the cortex beneath the coat of the dormant spore. Although our data suggested that SoaA was found below the coat layers of the ungerminated spore, SoaA was involved in the interaction of spores with macrophages shortly after infection. To investigate further the specific properties of the SoaA protein, the soaA gene was inactivated in the B. anthracis Ames strain. The SoaA protein in the Ames strain of B. anthracis increased the phagocytic uptake of the spores in the presence of anti-spore antibodies. Unlike the wild-type strain, the mutant soaA : : Kan strain was not readily opsonized by anti-spore antibodies. While the mutant spores retained characteristic resistance properties in vitro and virulence in vivo, the soaA : : Kan mutant strain was significantly less suited for survival in vivo when competed against the wild-type Ames strain.
منابع مشابه
Murine macrophages kill the vegetative form of Bacillus anthracis.
Anti-protective antigen antibody was reported to enhance macrophage killing of ingested Bacillus anthracis spores, but it was unclear whether the antibody-mediated macrophage killing mechanism was directed against the spore itself or the vegetative form emerging from the ingested and germinating spore. To address this question, we compared the killing of germination-proficient (gp) and germinat...
متن کاملIdentification and Characterization of Bacillus anthracis Spores by Flow Cytometry
Rapid and accurate detection of Bacillus anthracis, the causative agent of anthrax, remains an active area of research due to the continued threat of bioterrorist attack. The ability to differentiate Bacillus anthracis spores from spores belonging to other Bacillus species is important for the development of spore-based detection methods. Furthermore, not all Bacillus anthracis strains are full...
متن کاملProteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis.
The outermost proteinaceous layer of bacterial spores, called the coat, is critical for spore survival, germination, and, for pathogenic spores, disease. To identify novel spore coat proteins, we have carried out a preliminary proteomic analysis of Bacillus subtilis and Bacillus anthracis spores, using a combination of standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis separatio...
متن کاملImmunization of mice with formalin-inactivated spores from avirulent Bacillus cereus strains provides significant protection from challenge with Bacillus anthracis Ames.
Bacillus anthracis spores are the infectious form of the organism for humans and animals. However, the approved human vaccine in the United States is derived from a vegetative culture filtrate of a toxigenic, nonencapsulated B. anthracis strain that primarily contains protective antigen (PA). Immunization of mice with purified spore proteins and formalin-inactivated spores (FIS) from a nonencap...
متن کاملIdentification of Bacillus anthracis Spore Component Antigens Conserved across Diverse Bacillus cereus sensu lato Strains*□S
We sought to identify proteins in the Bacillus anthracis spore, conserved in other strains of the closely related Bacillus cereus group, that elicit an immune response in mammals. Two high throughput approaches were used. First, an in silico screening identified 200 conserved putative B. anthracis spore components. A total of 192 of those candidate genes were expressed and purified in vitro, 75...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 154 Pt 2 شماره
صفحات -
تاریخ انتشار 2008